This is a basic example which shows you how easy it is to generate
data with {TidyDensity}
:
library(TidyDensity)
library(dplyr)
library(ggplot2)
tidy_normal()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 -0.487 -3.15 0.000458 0.313 -0.487
#> 2 1 2 -0.731 -3.01 0.00128 0.232 -0.731
#> 3 1 3 0.681 -2.87 0.00319 0.752 0.681
#> 4 1 4 -0.870 -2.74 0.00705 0.192 -0.870
#> 5 1 5 -0.402 -2.60 0.0138 0.344 -0.402
#> 6 1 6 -0.717 -2.46 0.0242 0.237 -0.717
#> 7 1 7 0.576 -2.32 0.0379 0.718 0.576
#> 8 1 8 -1.75 -2.19 0.0533 0.0398 -1.75
#> 9 1 9 0.852 -2.05 0.0677 0.803 0.852
#> 10 1 10 0.679 -1.91 0.0789 0.751 0.679
#> # ℹ 40 more rows
An example plot of the tidy_normal
data.
We can also take a look at the plots when the number of simulations is greater than nine. This will automatically turn off the legend as it will become too noisy.