This is a basic example which shows you how easy it is to generate
data with {TidyDensity}
:
library(TidyDensity)
library(dplyr)
library(ggplot2)
tidy_normal()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 -0.642 -3.67 0.000241 0.261 -0.642
#> 2 1 2 -1.19 -3.53 0.000666 0.118 -1.19
#> 3 1 3 1.70 -3.39 0.00163 0.955 1.70
#> 4 1 4 -0.305 -3.25 0.00356 0.380 -0.305
#> 5 1 5 -0.632 -3.11 0.00693 0.264 -0.632
#> 6 1 6 1.03 -2.98 0.0121 0.849 1.03
#> 7 1 7 -1.03 -2.84 0.0188 0.152 -1.03
#> 8 1 8 0.328 -2.70 0.0265 0.628 0.328
#> 9 1 9 0.0496 -2.56 0.0340 0.520 0.0496
#> 10 1 10 -1.29 -2.42 0.0406 0.0990 -1.29
#> # ℹ 40 more rows
An example plot of the tidy_normal
data.
We can also take a look at the plots when the number of simulations is greater than nine. This will automatically turn off the legend as it will become too noisy.