This is a basic example which shows you how easy it is to generate
data with {TidyDensity}
:
library(TidyDensity)
library(dplyr)
library(ggplot2)
tidy_normal()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 0.434 -3.49 0.000313 0.668 0.434
#> 2 1 2 0.922 -3.36 0.000893 0.822 0.922
#> 3 1 3 1.07 -3.23 0.00225 0.858 1.07
#> 4 1 4 -0.450 -3.11 0.00502 0.326 -0.450
#> 5 1 5 0.614 -2.98 0.00990 0.731 0.614
#> 6 1 6 -0.523 -2.85 0.0173 0.301 -0.523
#> 7 1 7 0.621 -2.73 0.0269 0.733 0.621
#> 8 1 8 0.659 -2.60 0.0374 0.745 0.659
#> 9 1 9 -2.43 -2.47 0.0473 0.00749 -2.43
#> 10 1 10 -0.232 -2.35 0.0552 0.408 -0.232
#> # ℹ 40 more rows
An example plot of the tidy_normal
data.
We can also take a look at the plots when the number of simulations is greater than nine. This will automatically turn off the legend as it will become too noisy.